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Sulm~ary 

The present state of the meander model is reviewed and a detailed derivat- 
ion of the magnetic birefringence is given within this frame. 
detailed derivation of the magnetic birefringence is given within its frame. 
Introduction To develop a most realistic molecular model of amorphous 
polymers, polymer melts or concentrated solutions, there are essentially 
two conceptual ways of approach: (a) from the isolated coil in dilute 
solution or (b) from the extended chain polymer crystal. 

The first approach is well known (FLORY 1953,1969; DE GENNES 1979) - 
using the assumption of interpenetrating coils, obviously conserving most 
of their entropy - and e.g. accounts of the rubberelasticity of uncross- 
iinked polymer melts by the action of chain entanglements. But a more de- 
tailed description (e.g. of chain deformation and intermolecular inter- 
actions, favouring at least partial chain parallelism (YEH 1979))is 
difficult to achieve on a molecular scale. 

In the second approach (PECHHOLD et al. 1979, 1979a, 1980, 1982) one 
starts at a well defined state of similar density and proceeds stepwise by 
introducing definite typs of disorder(based on potential calculations) that 
must quantitatively account for the observed structural and mobility changes. 
In the statistical mechanics of disorder the cluster-entropy-hypothesis 
(CEH) is used throughout, and states: 

Clustering in subspace (e.g. conformation, dislocation, orientation, de- 
formation) of m equivalent elements (e.g. segments, s-dislocations, s- 
lines, s-layers), each having f accessible states (vibrational,confor- 
mational states, etc.), does not reduce entropy as long as m<f., 
Whereas perfect polymer crystals consist of parallel chains of only one 

low energy conformation, high temperature phases exist (e.g. in PE and t-l, 
4-PBD) that have accumulated more than half of the entropy of melting, but 
which still appear crystalline. Thermodynamic data of these conformational 
transitions are explained by assuming a mixture of energetically favoured 
chain conformations, realized in conformational clusters. The subsequent 
meltin~ can be accounted for by cooperatively formed dislocation walls, the 
statistical element being the segment-dislocation (number of segments in a 
line between walls).This short range order concept of the melt applies 
quite as well to amorphous atactic polymers and favours chain parallelism 
across longer distances, because mutual penetration of neighbouring chaines 
should increase energy more than gain entropy. 

With regard to the overall geometry of a macromolecule within a nearly 
parallel chain arrangement, the melt bundle is introduced, in which statis- 
tical tightfolding and reptation of each molecule results in a one dimen- 
sional coil appearance. 

* For low molecular systems, CEH has so far been applied in a dislocation 
theory of melting, a vacancy theory of evaporation and a cube-model theory 
of liquid crystals. 
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The meander model If one adopts this bundle concept (which has been al- 
ready proposed by KARGIN in 1957), two main questions have to be answered: 
(i) how large is the diameter,r, of the bundle and (ii) how far does it 
extend in one direction. Both problems can be solved simultaneously by 
using equilibrium statistics and essentially CEH. The basic idea is that 
chain segments gain orientational entropy if the bundle changes its direc- 
tion by sharply bending and/or superfolding. 

The most simple and symmetric topology in which a melt bundle can tightly 
superfold, densely to fill 3-dimensional coarse grains (for the bulk phase) 
or plane grains (for thin surface films), is an arrangement of meander cubes 
(PECHHOLD et al. 1979, 1980, 1982) + . To enable these cubes to occupy all 3 
accessible sites, the meandering bundle is assumed to link them via their 
cube diagonals serving as axis of rotational diffusion (fig. la). For the 
quantitative treatment of the proposed superstructure statistical elements 
must be defin@d (fig. lb) which are adapted to control 

segment-line of a 
bundle, containing %% 
r/d segments of 
length s. Xm 

(ii) cube rotation: ]11 |It ]~[ U 
segment-line across --- . ~ # 
the meander cube, . ~ (% 
consisting of r Y_z-T~0 
(r+x)/d segments. 

(iii) shear._deformation: [[ml/sl~ I 
molecule layers of X 
the cube~ composed P ~_--. Xb 
of (r+x) /s-d / ~'~ 
segments. / ~I~ I(I / Ib / Ic 

Meander topology and definition of Statistical 
elements 

The excess free energy /~gs per segment due to these orientational and defor- 
mational states of the bundle becomes (PECHHOLD et ai.1979, 1980, 1982) 

[i] 

(superfolding per (cube (shear 
half meander layer) rotation) deformation) 

[~g r+x 1 
Ags d s ~ r Agk in s d Agrot d.s dgdef 
kT =u + dkT al~1 ] + - -  + r+x kT (r+x) 2 kT 

free energy of I formation s s orientational entropy 
formation of --J of 2r/d $ of s-line clusters which 
one superfold chain-bends differ in chain direction 

According to immobilization effects Ag~ will be approximately proportional 
to T (PECHHOLD, GROSSMANN 1979). The contributions Ag_o ~ and Ag~_f have been 
discussed in (PECHHOLD et al. 1979, 1980): in 3> (-Ag ~ ~/kT)>0.Y~, depending 
on temperature and on the kind of the polymer;(-~gdefY~T) z 3 in 2 + 
in(3r/d), will be taken as constant here. 

To get the equilibrium values of x/r and r/s, a preliminary minimization 
of [I] is performed (PECHHOLD et al. 1982), showing that the total minimum 
of ~gs is in the range 1.5<x/r<2.5 for reasonable ~g~/kT-data. Therefore 

+ 
3-dimensional drawings of the meander topology are reproduced in 
(PECHHOLD et al. 1979, 1979a, 1980, 1982). 
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it is justified to use x/r=2 (and not 4,6,...) as geometrical condition 
from cubic topology. Repeating the minimization for r/s (at fixed x/r=2), 
the equilibrium meander superstructure can be characterized by 

Agf 
& 

r s , ~gs d r2 l  r3 l  . r4 l  . -  
3-~-- ~ J r d kT L ~ kT 

eq 
The f o r m u l a s  [ 3 , 4 ]  a r e  a p p r o x i m a t i o n s ,  b u t  s h o u l d  d e v i a t e  no  more t h a n  20% 
f r o m  t h e  more c o m p l e t e  r e s u l t s  (PECHBOLD e t  a l .  1 9 8 2 ) .  F l u c t u a t i o n s  i n  x / r  
and r / s  have  t o  be a l l o w e d  b u t  must  n o t  v i o l a t e  t o p o l o g y .  R e l y i n g  on CEH 
t h e s e  f l u c t u a t i o n s  can  be d e s c r i b e d  by  r e v e r s i b l y  c o u p l i n g  o f  any  two 
adjacent cubes in suitable relative orientation (x/r-fluctuation, fig.lc) 
and by changing the contour of the bundle cross-section without varying its 
area (r/s-fluctuation). 

At medium and even more at lower chain molecular weights the bundle dia- 
meter r decreases, because pairs of chain ends will be substituted for the 
tight chain folds within the superfolds, thereby reducing ag~ - in the 
idealized geometrical case - to Ag~ ~ Ag~ (l-w); w=r(r+x)/L.a being the 
geometrical probability to find a pair of chain ends within a half meander 
layer. Fro~ ~3] one therefore approximately gets 

[5] r A 4 I/2 1] , with A = L.d 
r : ~ [(i+ ~) - 3r~ 

L extended chain length, 
' d average chain distance 

In fig.2 (taken from 
(PECHHOLD, GROSSMANN, 
1979) 3r(M) is plotted 
for PE and PS, using 
the most probable r 
values. The approxi- 
mate validity of [5] 
has been shown for 
polyisobutylene from 
shear compliance ana- 
lysis (PECHHOLD et al. 
1979a). Further checks 
are in progress. Fig.2 
also contains the 
radius of gyration 
R (M) of completely 
l~elled chains in 

the cube meander FlS, 2 
topology, together 
with some SANS-data 
from various 
authors, pf is the 
probability for 
tight folds in 
the molecule. 
There are several 

500 (a) 

,oo 

100 ~ " ~  _a~,B- 

ZO II -"" 

M 
IO  i i I I I I I l l  I I I i i i l i I  I a i i i i i  

101 lO l 101 I0 I 
Molecular weight dependence of the meander slze 
3r and the radius of gyration R a for PE- and 
PS-melt. (a) ~E, (b) ~S, (c) 3r PS, (d) 3r PE 

1 12 M { 1 _ 3  [ 1 _ 2  1 

M 1 iI~ dl~ r /~ -RTkjlnmol -lpf I 

PS 52 1.2 8.7 60 20 
experimental re- 

PE 14 1.2 4.8 25 18 
sults from which the 
meander cube side length 3r/d (measured in lateral chain distances) can be 
evaluated if the analysis is carried out in the frame of the meander model 
(essentially using CEH). The 3r/d-methods which have so far been applied 
- some extensively, some in the very beginning - are listed in the follow- 
ing, together with references and relevant formulae. 
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meander theory (PECHBOLD et el. 
1979, 1980, 1982) and semi- 
empirical potential calculations 

plateau-compliance j 0  eN (PECHHOLD 
et el. 1979a, 1980) 
(rubberelasticity) 

glass relaxation by freezing out 
segment-dislocations (PECHBOLD 

P q 

et el. 1979a) L7J 
(activation diagram analysis) 

ratio of relaxation frequencies [8 ] 
(PECHHOLD et el. 1979a) L J 

anomalous superheating effect 
at melting (PECHHOLD et el. 1982)[9J 

magnetic birefringence [20] An 

oligomer/polymermixtures 
(PECBBOLD et el. 1982) 

r s Ag~ 

d d kT 

6] j0 i d 3 3r 2 
eN =-~-~ ( " ~  ) 

Q.y ~ ~ ( 3 r )  2 
s 3r s d 

~0 kT d ] 
fmax = ~- e [ [-(1-e kT) 

fGax/fJax z (3r/d) 4 

~ T kT m 
m d m 

T ~ 3r 6h s 
m 

4~ 3r N n 2+2 ~ 2 
15 d V 3n ( ) ~ ( 8 )  AX m AC~ m 

Langmuir-gauge 

B2/k 
T-T u 

radius of gyration of a few percent of oligomer 
reflects the superstructure of the environment 
(SANS in n-alkanes/d-PE and oligostyrenes/d-PS) 

polymers with only slight spreading tendency 
form thin films of thickness 3r or twice of it 

surface overgrowth, thin film thickness and 
structure 

is in the range 15 -30. 

R~berelasticity and rheolo~ 

L, J . . . . .  
9 P 7  NR j '  
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-6 -/, -2 0 2 �9 /,ig H_~Z 

electronmicroscopy 
(PECHHOLD et el. 1982) 

Because the results of orientation correlation methods, like magnetic bire- 
fringence, were interpreted as to disproof the meander model, a detailed 
derivation of ~0] is given in the appendix and a comparison with experimen- 
tal data added. For some polymers (PE, PS, PIB, NR) almost all above 
methods have been applied and result - within experimental accuracy - in well 
matched 3r/d-values. For most polymers the high molecular weight limit 3r/d 
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In the meander model, rubber- 
elasticity needs a more complex 
interpretation (PECHHOLD et al. 
1979, 1980, 1981) than in the 
coil model. Fig. 3 shows complex 
compliance master curves for cis- 
Polyisoprene in the uncrosslinked 
(a) and 30-Mrad crosslinked (b) 
state. They can be decomposed at 
least into 3 (a) and 2 (b) relax- 
ation processes, the low frequency 
flow relaxation being absent in 
the crosslinked sample: 
The coupled meander cubes within 
a coarse grain perform shear 
fluctuations, restricted to one 
chain distance per layer of 
molecules (intra meander shear, 
mediated by dislocation movement, 
fig.4). This topological restric- 
tion compares with that of 
entanglements in the coil model. 
A deformation free energy 
consideration leads ~o the 
plateau-compliance JaN" This 

o21 HN x r I.~:5 

T//"__ " 7  0,5 

o., ::::;T' ~ 31(Y31 ) a I%' inter) 

0,3 

F / v inter  
2 3 z~ S 6 o ' 31 

, / ,. , ~ i E 

0,6 j PIN ~ ~ ~ 

/ '  ' / " 2 i ~ : ' r  1.0 / / " 
0 5  " /  - ~ - ' / 

0.~ 

03 

0,2 

0.1 
~ i n t r a .  8 ,infe 

0 "Y31  = "31 " ' 3 1  

o ~ "~ ~ ;. ~ ~ "~ 
0 0,1 0,2 0.3 0./* - - - * .  1310311 0.8 

F i g . 4  
co.con,r.tlon o, ~ 3 - - ~ . )  
sDearbands 

~ ( O , ~ T  ,r)  

Cubic topology of 

meander blocks, 

linked via their 

cube diagonals 

Deformation modes, Its compliances LIJ and relaxation rates ~ -1 (o-o)  

mt ra-meander shear shearband-process 

J / 2  J / . l  / . I  
7.-=_=z 

I T ~ T ~  / T / T /  
illl 

(6r ~) 

FlOw-relaxation an(] viscous flow (of fractions) 

~ x  =2 , ~ ~ / ~ J ~ - ~  <O.seU~kUl) -1 ~ J ~ .  

r ' ~ " ~ #  ~ l  ~ 1 2(D,/o) 3 5 
/ ~ " I ~  " / ~ "  c~--~2~ =" -"  
I T~ 

d e f o r m a t i o n  m o d e  c a n  a c c o u n t  f o r  o n l y  
Tln~ra max ~ 0.58 (fig.5a, steep curves). 
Beyond these intra meander shear fluc- 
tuations large scale deformations be- 
come possible by interbundle displace- 
ments, i.e. by unfolding of suitable 
arranged meander cubes (fig.4). To 
this purpose whole files of meander 
cubes or even layers of them must 
cooperate in a shearband~rocess, the 
stress-strain behaviour of which is 

. . . . . .  ~zn~er 
snown zn rlg. Da t max ~ 9). In the 
statistical deformation theory (PECH- 
HOLD 1980) this characteristic of an 
already developed shearband, the 
stress-dependent concentration 8 of 
shearbands (fig.5b, dashed curves) 
and the superposition of intra- and 
interbundle shear (fig.5b, full curves) 
have been derived. From this molecular 
theory the nonlinear characteristic 
of any type deformation (e.g. uniaxial, 
PECHHOLD 1980) can be evaluated, if 
the meander size 3r/d and the 

rotational free energy Agrot/kT are 
known for a given polymer. 

Fig5 Theoretical stress-strain 
behaviour in shear for high 
molecular PE-melt. 
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Magnetic birefrin@ence Assuming an anisotropic molar susceptibility 
m 3' (X , ,, m - m 3.3 XI,1 , - X2,2,) of the monomer, the -axis of which is tilted 

against the-main chain axis 3 by an angle 8, the susceptibility of a chain 
segment of generally two monomers becomes 

s m �9 2^ m 2^ s m m 8+2xm'I 
[ I 0 ]  X3 3 = ( X 3 ' 3 ' - X l ' l ' ) s i n 2  = 2Xl'l'szn ~+2X3'3'c~ ~' XII i 

The superstructural unit (e.g. a straight chain cube or the meander cube) 
may contain a fraction ~ of chain segments oriented parallel to the 3-axis 
and (I - ~) segments perpendicular to it (e.g. ~ = I or ~ = 2/3). Then its 
segmental susceptibility may be written 

u s s u 1 s I s 
[11] X33 = ~X33 + (1-~)XI I , XI 1 = ~(I-~)X33 + ~(I+~)XI 1 

A coarse grain of cubic units may now be composed of z such cubes and (l-z), 
rotated (around the space diagonal) to the other two position. Then the 
susceptibility per segment of this oriented grain becomes (after some 
calculation) 

2 3z-i 3~-I s s i s s 
X 3 3 2 2 (X33-X11) + ~ (X33 + 2XII) 

[12] 

4 3z-1 3~-1 p2(8)(X~ ' m 2 m m 
3 2 2 3'-XI'1 ') + ~ (X3'3' + 2X1'I') 

1 3z-I 3~-i s s I s s 
3 2 2 (X33-X11) + ~ (X33 + 2XII) 

2 m m 
32 3z-12 3~-i2 P2(@) (X3 , 3 , - X ? , I ,  ) + ~ (X3 '3 '  + 2 X I ' I '  ) 

If a magnetic field B is applied along a 3''-axis, related to the 3-axis of 
the cubic superstructure within the grain by a tilt angle~ , the respective 
susceptibilities per segment in the 3''- and l''-directions read 

x~,,3,, (~) : ~3 
{~ } 2 m  m 

[13] 3-I -T--3~-I p2 (@)p2 (~)(X~, 3,-X?, i , ) +~ (X3,3,+2XI, I , ) 

2 
x~,, i -  (~) :  - T 

I n  t h a t  f i e l d  B the d iamagne t i c  energy E o f  a segment l i n e  (o f  3 r / d  
segments,  wh ich  i s  the s t a t i s t i c a l  e lement  f o r  meander cube r o t a t i o n }  
becomes 

_ 1 3r g B: 
[~4]  ~ - 7 ~  x3, ,3  ' ' (~)  
To calculate the orientational order parameter z=(1+n)/2 of a grain at 
fixed angle ~ and in internal equilibrium, one has to introduce e into the 
segment line free energy of cube rotation dgr-t (cf. PECHHOLD 1980, 
equation [6a] , or PECHHOLD, GROSSMANN 1979 L~.2] ) and to solve the 
minimization equation (PECHHOLD 1980 [8~ ~or PECHHOLD, GROSS~%NN 1979 [5.4]) 
-which now contains an additional term ~--~-[~ X~,,~,,(~)/ ~z] B /kT on the 
left hand side - for ~. This can be performed b~ ~xpanding n around its 
equilibrium value (-I/3) in the isotropic state, i.e. for T>T 

U 
I [15]  n ~ - ~ - ~ , w i t h  ~ ( B ) ~ I  
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After some calculations, one gets the intermediate relations 

I-~ 9 i 2+E I I+E - 2E 2 
I+~ ~ 2 (i+ ~ ~) , ~ ~ ~--E- - ~ E[2~E~ and 

~+n~ t [1 27 E ] 
~-~ ~ I+E 4 2+E ~ , with E = exp(-g/kT) as in (PECHHOLD et 

al. 1979, 1980) 

and finally the solution of the equilibrium condition (PECHHOLD 1980 [8a] 
or PECHHOLD, GROSSMANN 1979 [5.4] ) 

3z-I 3~+I 3 i 3r g 
2 4 ~ ~ ~ ' q [ ~ X 3 , , 3  ''(~)/ ~z] B' 2§ [16] 

kT 7E-4 
The last factor on the right side is equal to I for T + ~ and becomes z 23 
for T=T , because E = ~-i. It can be approximately written as T/(T-T ), but 

U U 
one should keep in mind that it really diverges a llttle below T (which is 

�9 u 

an interesting finding with regard to the susceptibility behavzour near 
p~ase transitions). 

The magnetic birefringence an~ n, of a~-oriented grain, is related to 
the anisotropic polarizability via Clausius-Mossotti's formula 

N n 2+2 g ~"i (~)] 
[17] An(~) = 2~ ~ ~ [~3"3" (~) - " 

in which N/V is the number of chain segments per unit volume, and the 
difference in polarizabilities can be reduced to the monomeric anisotropy 
using [13] respectively 

m N n2+23z-i 3~-I P2(0 ) p2(~ ) (~'3_ 
[18] an(~) = 4w V 3n 2 2 

Introducing (3z-1) from [16] and carrying out the differentiation, one gets 
for the magnetic birefringence of a ~-oriented grain - using the abbrevia- 

tions A~m = ~'3'-~'i' , AX m = X3,3 ,m _ X~,I ' 

2 Bi/k 
[19] An(~) ~ 4~33rd vN n2+2(3~-13n " 2 ) P22 (0) P22 (~)Ap A~ m T-T 

u 

which finally becomes after spatial averaging over~ 

4~ 3r N n 2+2 ~ 2 B I/k [2o] 15 d V 3n (z) P~ (8) AX m a~ TM T-T An 
u 

Comparing the theoretical result [20] with experimental data of An or the 
Cotton-Mouton constant Cm=an/lB 2 , determined for some polymers by 
STAMM 1977, one can evaluate 3r/d, provided that the monomeric AX m and a~ m 
are known. Using the findings Anz 4.1"I0-9B 2 ([B] = IT) and the parameters 
for polystyrene (PS), given in (STAMM 1977):p=i.05 gcm -3, M==2-I04 g/mol, 
N/V=NA0/Ms~3.0-1021 cm -3, n=l.6, axm=5.10-4jT-2mol -I, aem~6~0-10 -24 cm ~ , 
T-Tu~373 K, and Oz20 ~ (from semiempirical potential calculations (BECK 1976) 
of quasiplanar (t~tg) SPS- and IPS-helices), one finds from [20] (with ~=2/3), 
that the relative meander cube side length 3r/d ~ 10.5, which fits the 
prediction (cf. PECHHOLD 1980, fig. 13 or PECHHOLD,GROSSMANN, fig.6) for a 
M z 30.000PS, used by STAMM 1977. 

In a paper by FISCHER et al. 1976, fig.4, An-data on the PS dimer and 
short chain oligomers are reported, which are smaller by roughly a factor 
1.6 than those on PS. Choosing a single segment as the statistical element 
(in contrary to 3r/d segments for the meander cube) and assuming a straight 
packing of elements into small cubic units (~=I) and also 0~0 ~ one gets 
from [20] (with all other parameters unchanged) a An which is smaller by a 
factor 1.7 compared with that of PS. 
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For.poly'N-vinylcarbazol (PVCA, M z 410000) ST~tM 1977 got C ~ 60-I0-5T -2 
-I w < m 

cm from extrapolatlon of measurements on 10p PVCA-chloroform solutions 
at 20 to 65~ Comparing this with ~ ~ 6.5"10-OT-2cm -I for polystyrene at 
373 K one findslfor PVCA An z 30.10-~B 2. Using the parameters 0=1.19 g/cm 3 , 
M =2-193 g mol- , N/V= 1.85"I021cm -3, n= 1.7, AX m z 2-Axm(ps) ~ 10-10-4JT -2 
m~l -I, A~m = 2.~m(ps) z 12.10-24cm 3 , T-Tu~ 373, @~ 20 ~ as in PS, [20] 

yields the meander cube side length 3r/d ~ 30. This value is not unreason- 
able because of the high molecular weight, but will still be reduced to 20, 
if @ should approach 0 ~ 

Finally, [20] shall be applied to a liquid crystal, MBBA, in its isotopic 
phase. The magnetic birefringence was shown (STINSON, LITSTER 1970) to 
follow An/B ~ ~ 2.2-10-6. (T-T)-I. Taking AX(molecule)~2"~X TM ~ 5-10-4jT -2 

-i . U N n2+z m tool , and the normal blrefrlngence, n -n, ~ 2w ~ ~ A~ ~ 0.25 (KELKER, 
" ~ V J ~  

HATZ 1980), both from an extrapolation to the completely oriented nematic 
state, the formula [20] yields An/B 2 ~ 2.1"I0-6(T-Tu)-I, taking into 
account that ~ = i and 8 = 90 ~ . 

These examples show that, on the basis of CEH, orientation correlations 
of oligomers and polymers - as described in those cube models - do not at 
all contradict the experimental data (as has been stated e.g. in (FISCHER 
et al. 1976)). 

Supports by the Deutsche Forschungsgemeinschaft (Schwerpunkt physikalische 
Grundlagen des FlieB- und Deformationsverhaltens von Polymeren) are 
gratefully acknowledged. 
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